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ABSTRACT 

We construct rank-one infinite measure preserving transformations sat- 

isfying each of the following dynamical properties: (1) Continuous L °° 

spectrum, conservative k-fold cartesian products but nonergodic cartesian 

square; (2) ergodic k-fold cartesian products; (3) nonconservative cartesian 

square. We show how to modify the construction of (1) to obtain type Ilia 

transformations with similar properties. 
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Introduction 

We construct rank-one infinite measure preserving and nonsingular transforma- 

tions with various dynamical properties. The constructions are by cutting and 

stacking and of a different nature than infinite measure preserving random walks 

or Markov shifts that  have been used to examine similar properties. 

Let (X, #) be a measure space isomorphic to the unit interval or the real 

line with Lebesgue measure. A t r a n s f o r m a t i o n  is a bimeasurable bijection of 

X. A transformation T is m e a s u r e  p r e s e r v i n g  if for all measurable sets A, 

#(A) = #(T-1A);  it is n o n s i n g u l a r  if for all measurable sets A, #(A) = 0 if 

and only if # (T-1A)  = 0. A nonsingular transformation is c o n s e r v a t i v e  if for 

all sets A with #(A) > 0 there exists n > 0 such that  # ( A n  T-'~A) > O. T is 

e r g o d i c  if for all measurable A, T-1A = A implies #(A) = 0 or #(A c) = 0. One 

can show that,  in a nonatomic space, an (invertible) ergodic transformation is 

conservative. The property that for all sets of positive measure A and B there is 

an integer n > 0 such that  ~(A N T~B) > 0 is equivalent to T being conservative 

ergodic. Given a transformation T, an L °° e igenva lue  is a complex number 

such that  for some non-nuU function f in L °°, f (Tx)  = )~f(x) a.e. Since the L °° 

norms of f and f o T are equal, eigenvalues must have modulus 1. If T is ergodic 

then tfl must be constant a.e. T has c o n t i n u o u s  L °° s p e c t r u m  if it is ergodic 

and its only L °~ eigenvalue is 1. The notion of weak mixing for nonsingular 

transformations is studied in [ALW] and is shown to be equivalent to continuous 

L °~ spectrum. 

We describe briefly our "cutting and stacking" constructions IF1]. A level  is 

a finite left-closed right-open interval. A c o l u m n  C of he igh t  h consists of h 

disjoint levels C = {Bo,Bx, . . . ,Bh-1) .  We think of a column C as partially 

defining a transformation on each level except the top. The transformation is 

defined on level Bi by the unique affine map that  sends the interval Bi onto the 

interval Bi+l. (The intervals in a column need not be of the same length in the 

nonsingular case, and when they all have the same length the transformation 

is measure preserving.) A cutting and stacking rank-one construction consists 

of a sequence of columns Cn such that C~+1 has been obtained from Cn by 

cutting each level of Cn into rn subintervals where the ratios of the lengths of 

the subintervals to the level is the same for all levels in a given column, and by 

possibly placing additional sublevels, called space r s  above the top level of Cn. 

~n-thermore, the union of the levels in all the columns generates the Borel sets. 
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(In the measure preserving case the ratios are determined by the number of cuts 

rn; in the nonsingular case the ratios must be specified.) It follows by similar 

arguments to the finite measure preserving case that  these transformations are 

conservative ergodic [F1]. 

Our first example is an infinite measure preserving rank-one tranformation with 

continuous L ~ spectrum but nonergodic cartesian square. As is well known, for 

finite measure preserving transformations, continuous spectrum is equivalent to 

ergodic cartesian square. In general, ergodic cartesian square implies continuous 

spectrum. The first example showing the converse of this statement is not true 

for infinite measure was given by Aaronson, Lin and Weiss in [ALW]; however our 

example is of a different nature, and it generalizes to give examples with the same 

phenomena of type III~ nonsingular transformations. The example in [ALW] is 

an infinite measure preserving Markov shift (the square of a random walk on the 

integers) that  fails to be ergodic when it fails to be conservative. (It follows from 

[P] that  conservative infinite measure preserving Markov shifts whose underlying 

stochastic matrices are recurrent and aperiodic (hence irreducible) are ergodic.) 

In our case we obtain nonergodic cartesian square but with all k-fold cartesian 

products conservative. We then construct infinite measure preserving rank-one 

examples where all k-fold products are ergodic and where the 2-fold product is not 

conservative. We also note that infinite measure preserving cutting and stacking 

rank-one constructions must have zero Krengel entropy (this is the case since 

the induced transformation on any level must be rank-one and of course finite 

measure preserving), while random walks on the integers have infinite entropy 

[F3]. 

By Proposion 4.3 of [ALW], the examples of gakutani  and Parry [KP] of er- 

godic index 3 also yield infinite measure preserving transformations with contin- 

uous L ¢¢ spectrum but nonergodic cartesian square. However, these examples 

also give Markov shifts with nonconservative cartesian square. 

The Radon-Nikodym derivative of a nonsingular transformation T is defined 

to be d# o T/d# and is denoted by ¢d T .  Given a nonsingular transformation T 

on (X,#) ,  with # a-finite, the r a t i o  se t  of T, r(T),  is defined to be the set of 

nonnegavite real numbers t such that  for all E > 0 and all measurable sets A 

there exists n > 0 such that  

#(ANT-hAM {x: WT-(X) E N~(t)}) > 0, 

where N~ (t) is an e neighborhood of t. 
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The set r (T)  \ {0}  is a closed multiplicative subgroup of the reals and if 0 E 

r(T) then T admits no equivalent a-finite invariant measure. We say T is t y p e  

IIIA, 0 < A < 1, if its ratio set is {)n: n E Z} U {0}. For background material 

we refer to IF1], [HO] and [gw].  

ACKNOWLEDGEMENT: W e  would like to thank the referee for useful remarks. 

1. Continuous spectrum with conservative nonergodic cartesian 

square 

We define our transformation S by giving the sequence of columns Cn. Let 

Co = [0, 1) and h0 = 1. Given the column C,~ of height h,~, we obtain C~+1 by 

first cutting Cn into two subcolumns of equal width and placing 2hn + 1 spacers 

on top of the right-hand subcolumn, to obtain a new right ~ubcolumn. Then 

stack the (new) right subcolumn on top of the left subcolumn, (i.e., S takes the 

top level of the left subcolumn to the bottom level of the right subcolumn). Thus 

h,~+x = 4h~ + 1. It is clear that S is infinite measure preserving. 

PROPOSITION 1.1: S has continuous L °° spectrum. 

Proof." Let f E L ~° be such that  f ( S x )  = Af(x) a.e. We may assume that  

Hf[[ = 1. Given e > 0 there exists a set A of positive measure such that for all 

x, y E A, 

f (Y)  - 1 < e. 

Since levels generate the measurable sets, there exists a level I of Cn, for some 

n, such that  
11 #(A M I) > ~ # ( I ) .  

Parti t ion I into four subintervals of equal length; since A covers more than 2/3 

of each subinterval of I,  we can choose x E A M I such that  Sh"x  and s4h"+lx 

are in A M I. By considering f ( S h " x ) / f ( x )  and f (S4h~+Ix) / f (x )  we get: 

[A h" - 1[ < e a n d  [)~4h~+l _ 1[ < e. 

The first inequality gives that  IX 4h" - 1[ < 4e. Therefore 

]A - 11 = IA 4h"+1 - A 4h" ] < 5e. 

(The argument only uses that  the number of spacers is kh,~ + 1, for some k > 0.) 

$ 
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We will use the notion of partial rigidity and bounded Radon-Nikodym 

derivative to show our examples have conservative k-fold products for all positive 

integers k. Partial rigidity was introduced in IF2] for fn i te  measure preserving 

transformations. We say a nonsingular transformation S is p a r t i a l l y  r ig id  if 

there exists ~/> 0, an increasing sequence r,~, and a constant R > 0 such that  

for all sets A of finite measure 

(1) l iminf#(S~"A n A) > u#(A) 
n - + o o  

(2) wsr~ (z) < R a.e. 

and 

A. del Junco and the third-named author have defined rigidity for nonsingular 

transformations by requiring in addition that  the Radon-Nikodym derivatives 

converge to 1 in L 1. This notion will appear elsewhere and is not necessary in 

this paper. 

LEMMA 1.2: Let S be a nonsingular transformation satisfying condition (1) for 

ali sets A in a dense algebra of sets of finite measure, and condition (2) above. 

Then S is partially rigid along the same sequence rn. 

Proof: Let E be a set of finite measure. Choose a set G of finite measure which is 

in the dense algebra and such that  #(EAG) < ~/3R. After applying the triangle 

inequality we get 

#([S~n E n E]A[S~G n G]) _< #( Sr~ E N ( EAG) ) + #( S ~" ( EAG) n G) 

_< ~(EAG) + #(S ~" (EAG)) = ,(EAt) + / ws~. 
JE AG 

< (1 + R)#(EAG). 

Finally, since Sr"E n E D (S~"G N G) \([S~"E n E]A[S~"G n G]), we have 

#(Sr"E n E) > ~I#(G) - ( 1  + R)#(EAG). 

By taking the limit infimum on the left hand side and choosing a sequence of 

sets G arbitrarily close to E we obtain the desired result. I 

PROPOSITION 1.3: If  nonsinguIar transformations S and T are partialIy rigid 

along the same sequence r,~, then S x T is partially rigid along rn. 

Proof: Suppose S and T are partially rigid on the sequence r,~; we can assume 

the constants ~ and R are the same for S and T. It is not difficult to check 
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tha t  S x T satisfies the condition of partial rigidity for finite unions of disjoint 

rectangles along the sequence rn and with constants 72 and R 2. Now apply 

Lemma 1.2. I 

COROLLARY 1.4: I f  a nonsingular transformation S is partially rigid then, for 

all k > 1, its k-fold cartesian product  is conservative. 

Proof: We first show that  if S is partially rigid then it is conservative. If A 

has positive measure choose A ~ C A of finite positive measure, then by partial 

rigidity there will exist some n such that  #(S  r~ (A') n A') > f/#(A')/2 > 0. 

Now the corollary follows by repeated applications of Proposition 1.3. I 

THEOREM 1.5: The transformation S has continuous L °° spectrum, nonergodic 

cartesian square and all k-fold cartesian products conservative. 

Proof: First we show that  S is partially rigid. Let I be a level in column Cn. 

From the construction of S, #(Sh"I N I)  = ½#(I). By approximating sets by 

disjoint unions of levels we get that  S is partially rigid. 

We now show that  S x S is not ergodic. We find A and B of positive measure 

such tha t  for all n > 0, 

# x #((S x S)~(A x A) n (A x B)) = O. 

Let B be the top level of C1 and A = S - l B .  It  is convenient to view the levels 

of Cn cycling around a circle. Given n let P~ be the cycle on Cn, i.e. Rn is the 

t ransformation on Cn that  maps each level to the one above it, and the top to 

the bot tom.  (Rn agrees with S on all levels of Cn except the top level.) For 

L = A or L = B define 

In(A,L) = {i: 0 _< i < hn,#(R~ANL)  > 0}, 

and 

In = In(A,A) NIn(A,B) .  

We show by induction that  In = 0. It  is clear that  I1 = 0. Assume that  I~ = 0. 

Each of A and B appears  as a union of levels in both C~ and Cn+l. From the 

construction of S we obtain the following inclusion for L -- A or L -- B: 

In+l(A, L) C In(A, L)U(In(A, L)+hn)U(In(A, L)+2hn+I)U(I,~(A, L ) + 3 h ~ + l ) .  
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it; )2h,~ ,t and p2hn '+-14  Note that  *~a+l . . . .  a+l . .  are contained in the spacers placed on the 

right subcolumn of Cn. Thus 

Ia+l = Ia+l(A, A) n In+l(A, B) 

C In(A, A) n In(A, B) 

u (In(A, A) + ha) N (In(A, B) + h~) 

u (In(A, A) + 2ha + 1) N (In(A, B) + 2h,~ ÷ 1) 

U (In(A, A) + 3ha + 1) n (In(A, B) + 3ha + 1). 

By induction each row in the above expression is the empty set; therefore I~+1 = 

0. For all i there exists n > 0 such that SiA = RiA.  Therefore for all i, 

# x #((S  x S)i(A x A) N (A x B)) = O. . 

2. Hank-one infinite measure  with ergodic k-fold cartesian products  

We define our transformation T. Let Co = [0, 1). Given column Ca with height 

ha, we obtain Cn+l by cutting Ca into three subcolumns of equal width, plac- 

ing one spacer above the middle subcolumn, placing 3ha + 1 spacers above the 

rightmost subcolumn, and then stacking the (new) middle subcolumn on the left 

subcolumn to make an intermediate subcolumn, and then the (new) right sub- 

column on top of the intermediate subcolumn. This can be thought of as an 

infinite measure preserving Chacon transformation. 

Define Ha,0 = 0, for n C Z + and H,~,t = ,-,i=ns-'a+e-1 hi for n E Z + and ~ _> 2. 

Detinition: We say levels A and B in Ca are Igl apart if B is the i + g level in 

Ca when A is the i level. 

The following lemma utilizes the role of the single spacer placed on the middle 

subcolumn. 

LEMMA 2.1: Let g and n be positive integers. If I and J are levels in Ca which 

are less than g levels apart, and where I is above J, then 

n j )  > #(TH~,t I 

Proof: Fix a positive integer n. Let I be a level in Ca which is contained in the 

top (ha - g) levels of Cn. We will prove inductively on g that there exist levels 

Ij = Ij(g) for 0_< j < ~ - l i n  Ca+t such that  Ij C THn,~INT-JI .  This is 

sufficient to prove the lemma since 

~(I~) = ~ , ( I 1 .  
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For the primary case we have H,~,I = h,~. The absence of a spacer on the first 

subcolumn of Cn and the placement of a single spacer on the middle subcolumn 

ensure that  Thai contains two levels in Cn+l with one contained in I and the 

other contained in T-1I.  

Now suppose there exist levels Ij(r - 1) in C,~+~-1 such that Ij(r - 1) C 

T H . . . .  ' I  n T - J I  for 0 ___ j < r - 2. Since Ij(r - 1) is a level in Cn+~-i for 

0 <_ j < r - 2, then there exist levels Ij(r) in C~+r for 0 <__ j _< r - 2 such that  

Ij(r) C Ij(r - 1) vITh"+*b(r -- 1) C TH~.~I n T - J I .  

Finally there exists a level Ir-l(r) in C,~ such that 

Ir-l(r)  C T-1Ir-2(r - 1) nTh~+rIr_2(r- 1) C TH".~I nT-(~- I ) I .  

THEOREM 2.2: The k-fold cartesian product o fT  is conservative ergodic. 

Proof: Let u denote the k-fold product of Lebesgue measure and let S denote the 

k-fold product of T. Also let E and F be subsets of the product space satisfying 

v(E) > 0 and u(F) > 0. We will exhibit positive integers n and ~ such that 

v(SH~,*E n F) > 0. Choose levels Ai, Bi for 1 < i < k in some column Cm-1 so 

that 
17 17 v(E n A) > (~)v(A)  and v(F n B) > (yg)v(B) 

where A = A1 x A2 × .-- x Ak and B = B1 x B2 x . . .  × Bk. 

For each i choose the top copy of Ai in Cm and the bottom copy of Bi in Cm 

and rename them Ai and B{, respectively. Then Ai will be above B{ in Cm, for 

1 < i < k, and A = A1 × A2 × " "  x Ak and B = B1 x B2 x . . .  × Bk will satisfy 

(1) u(E n A) > (-~)u(A) and u(F n B) > (~)u(B). 

For convenience let E and F denote E n A  and FVIB, respectively. Let £ = hm. 

Thus Ai and Bi are less than £ apart for each i. Denote 

1 ~=~. 
Let n >_ m and label the copies of Cm in C,~ from 1 to 3 n-re. 

Define V - -  {(Vl, . . . ,vk):  v~---- 1 ,2 , . . . ,3 '~-m}.  G ivenu  = (ul , . . . ,uk)  e Y 

let E,, = I1 x ..- x Ik where Ij  C Aj is also contained in the uj copy of Cm in 
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Cn. Thus A = Uvev Ev and B = U .ev  Fv. Pick n large enough so there exist 

subsets U' and V' of V such that 

E ' =  U Ev 
vEU' 

and 

F'= UF,, 
vEV '  

satisfy 

(2) 

Thus (1) and (2) give 

(3) v(E'ZXA) < Iv(A) 

Let W" = {v e U': v ( E ~ \ E )  < 

Choose V" and F"  similarly. 

Then 

1 k t -~ v(E \ E")= 

By the triangle inequality, 

Similarly 

u(E'AE) < 1Aghkv(A) and v(F'AF)  < 1Sky(B).  

and v(F'AB)  < iv(B).  

(l~k),(Ev)} and define E" -- Uveu,, Ev. 

v(E"AA) < ½v(A). 

v (F"AB)  < iv(B).  

Therefore U" fq V" # 0. 

Let u E U" M V". Thus by Lemma 2.1 

. ( s"-  tE~ n f~) > ~%(F~). 

If we let W = (SH'~,t E fq F )  and Z = (sH",~ E,~ N Fu), we get 

. (w)  > . (z)  - . ( z . .  w) 
>_ v(sH",tE,, Cl Fu) - v(Eu \ E) - ,(F,~ \ F). 

Therefore 

.(w) >_ ~k.(F~) - ½~k.(E~) - ½~k.(F~) 

= ~k-(F~). i 

v c U '  ". U" 

< v(E' \ E). 

E ~ '~kv(Ev) 
v c U '  ". U" 

<- E .(Zv \ E l  
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3. R a n k - o n e  w i t h  n o n c o n s e r v a t i v e  c a r t e s i a n  s q u a r e  

We construct infinite measure preserving rank-one transformations T with T × T 

not conservative. Let r ,  be a sequence of integers with r ,  > 2. Let C1 = [0, 1) 

and obtain Cn+l from C ,  in the following way. Cut C,~ into rn subcolumns of 

equal width, place (2 ~-- i  - 1)h~ spacers on the i th subcolumn for 1 < i < r~ - 1, 

and place [rnhn + ~ 1 - 1 ( 2 ~ - i  - 1)h~] spacers on the last subcolumn. (The 

number of spacers on the last subcolumn is chosen so that  they form half of the 

levels in C~+1.) Then stack from left to right to form C~+1 of height hn+l. 

T H E O R E M  3.1: Ify~n=l(1/rn) < oo then T x T is not conservative. 

Proof: Choose n EZ + such that  ~k~__,~(1/ra) 

Let Ck,~ denote the gth subcolumn of Ca and 

for k_> n, 

# x #(Aa,t x Aa,~) = 

Hence 

Define our exceptional set by 

< 1. Let A be the top level of Cn. 

denote Ak,~ ---- A N Ck,~. Note that  

~ #(A) 2. 

xAk /) =I tA/  

oo Tk 

E = A × A \ [ U  U(Aa,~ × Ak,~)]. 
k=n  £=1 

Thus u × u(E)  ~ u(A)~(1 - E~%.(1/Tk))  > 0. We will prove inductively on k 

that  

# x #((T x T ) i E n E )  = 0 

for 1 < i < hk. 

Since A is a single level in C~ and we place spacers on each subcolumn C,,~ 

t h e n # x # ( ( T x T ) i E N E ) = 0 f o r l < i < h a .  

Now suppose # x # ( (T  x T)iEF)E)  = 0 for 1 < i < hk, and let hk <_ i <_ hk+l. 

We first claim tha t  for ~ ¢ m, # x #[(T x T)~(Ck,~ x Ck,m) N (Ck X Ck)] = O. 

Since we place (2 rk-~ - 1)hk spacers on Ck,e we have that  p(TiCk,~ n Ck) = 0 

for hk <_ i < (2 rk-~ -- 1)hk. The number of iterations for the bot tom level of 

subcolumn Ck,~ to reach the first spacer above Ck,rk equals 

rk--1 rk--~. 

(rk - (g - 1))hk + E (2~k-J - 1)hk = E 2jhk = ( 2 r k - ~ + i  - X)hk" 
j = l  j = 0  
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Hence #(TiCk,t N Ck) = 0 for (2 rk-t+l - 1)hk < i < hk+l. Therefore the sets 

It = {hk < i < hk+l: #[TiCk,t M Ck] > 0} are disjoint for different g and hence 

× , [ ( T  x × Ck,m) n x Ck)] = 0 

for t. ~ m. (Note that  for i > hk the last subcolumn is moved into the spacers.) 

Finally, since tt × #[EVI (Ck,t × Ck,t)} = 0 then 

# × #[(T × T) iEnE]  = 0 

for 1 < i < hk+l. I 

4. R a n k - o n e  t y p e  I I I  examples  

We construct type III~ examples, 0 < A < 1, with the properties of the example 

of section 1. Let Co = [0,1) and ho = 1. To obtain column C1 first cut Co 

into two subintervals of lengths A/(1 -t- A) and 1/(1 + A) and place the right 

subinterval on top of the left to obtain an intermediate column C~. Then place 

a copy of C~ on top of the first C~, and put an extra level on top of the second 

copy of C~ of length equal to the length of the first level of C~. This defines C1 

of height hx = 4h0 + 1. Now given column Cn of height h~, obtain column Cn+l 

by cutting each level of Cn in the proportion A/(1 + A), 1/(1 + A) to obtain Ca+ 1. 

Then place a copy of C~+ 1 on top of the first C~+I, and put a level on top of the 

second C~+ 1 of length equal to the first level of Cn+ 1. This defines Cn+l of height 

h~+l = 4hn + 1. On each level the transformation is defined by the unique affine 

map that  takes that  level onto the one on top; the contraction or expansion on the 

level is the value of the Radon-Nikodym derivative on that level. For example, 

the Radon-Nikodym derivative on the first two levels of C1 has values 1/A and 

%. It is clear that  the resulting transformation T~ is conservative ergodic and the 

contrations or expansions are powers of A. 

THEOREM 4.1: The transformation T~ is of type III~, has continuous L ~ 

spectrum, all its k-fold cartesian products are conservative and T~ x Tx is not 

ergodic. 

Proof'. We first show it is type III~. Note that  WT£(X) E {A n} and thus r(T~) E 

{A n} U {0}. It suffices to show that  1/A E r(T~). Let A be a set of positive 

measure; since the levels generate, there is a level I in some column Cn such that  

#(A M I) > ~ # ( 1 ) .  
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Level I is broken into two sublevels I1 and I2 in the ratios A/(1 + A), 1/(1 + A) 

that  are used to construct column C,~+1. Let k be the first integer such that  

Tk(Ix) = I2. Since T~ is linear on levels of Cn+l and 

1 

we have WT~ (x) = 1/A for a.e. x E 11. Since A covers more than 2/3 of 11 and /2 ,  

there is a set of positive measure of x E (AM/I) NT-k(ANI2) with WT~ (x) : 1/)~. 

This shows 1/A E r(Tx). 
The proof in Proposition 1.1 applies with minor modifications to show that  TA 

has continuous spectrum. In fact, choose the level I so that 

n I) > + + (1 -4- A) 2 1#'I'" ( )  

Then partition I into four subintervals of lengths in the ratios 

A 2 A A 1 

(1 + A) 2' (1 + A) 2' (1 + A) 2' (1 + A) u. 

Finally proceed as in the proof of Proposition 1.1. 

To show conservativity of the cartesian products we show that T~ is partially 

rigid and apply Corollary 1.4. Let I be a level in a column Cn. From the 

construction of T~, 
1 

 (T oI n I) = 

To prove the bound on the Radon-Nikodym derivatives we observe that  given a 

level I in Cn, if I1 and I~ are the subintervals of I as above, WT~,~ (x) = 1/A for 

a.e. x E I1 and wT~,, (x) = A for a.e. x E /2. Lemma 1.2 gives that Tx is partially 

rigid. 

Finally, one can check that the proof of 1.5 also applies in this case since it 

only uses the combinatorial structure of the transformation and nonsingularity. 

I 

References 

[ALW] J. Aaronson, M. Lin and B. Weiss, Mixing properties of Markov operators and 
ergodic transformations, and ergodicity of Cartesian products, Israel Journal 

of Mathematics 33 (1979), 198-224. 



Vol. 102, 1997 RANK-ONE WEAK MIXING 281 

IF1] 

IF2] 

IF3] 

[HO] 

[KP] 

[KW] 

[P] 

N. A. Friedman, Introduction to Ergodic Theory, Van Nostrand, 1970. 

N.A. Friedman, Partial mixing, partial rigidity and factors, Contemporary 

Mathematics 94 (1989), 141-145. 

N. A. Friedman, Mixing transformations in an infinite measure space, Studies 

in Probability and Ergodic Theory 2 (1978), 167-184. 

T. Hamachi and Osikawa, Ergodic groups of automorphisms and Krieger's 

theorems, Seminar on Mathematical Sciences, Keio University 3 (1981), 1-113. 

S. Kakutani and W. Parry, Infinite measure preserving transformations with 

"mixing", Bulletin of the American Mathematical Society 69 (1963), 752-756. 

Y. Katznelson and B. Weiss, The classification of nonsingular actions, revisited, 

Ergodic Theory and Dynamical Systems 11 (1991), 333-348. 

W. Parry, Ergodic and spectral analysis of certain infinite measure preserving 

transformations, Proceedings of the American Mathematical Society 16 (1965), 

960-966. 


